Last Modified on 03/30/2023 5:25 pm EDT

This setup is used to check QualLink if a user with a given email exists. If not, then an account associated
with said email is created and a temporary password is created and e-mailed to the user/respondent. We
gather PIl information such as First/Last name and email address within Decipher and use that
information through an APl integration with QualLink to realize the setup.

Program your survey as usual, but make sure a Pll collection question is added to the survey, that would
specifically require the below information from each respondent:

® First name
® |[ast name
e Email address

This information is needed to check for an existing user, or otherwise register a user account for the
respondent. Without it, the QualLink integration will not be possible.

The following fields are available to pass through information to QualLink:

Email (required) - Respondent email. Must be a valid email. Eg. john.doe@example.com

FirstName - Respondent’s first name.

LastName - Respondent’s last name.

DisplayName (required) - Display name for the new user (i.e. username).

ApiKey - The AP/ key provided from Qual Link for this job.

SetTempPassword - Boolean value (1 - True; 0 - False). Whether a temporary password should be

generated if this is a new user.

ResponseFormat - Boolean value (1 - True; O - False).

® |anguageCode - Language code for the new user. Must be a valid BCP 47 language tag. (eg. en-GB,
es).

e Eventld - The Event ID from Qual Link for this job.

® GroupTags - Groups to add the new user to. A comma separated list of strings, that would act as

filter tags that each respondent should be assigned to. On Qual Link’s side, passed group tags will be

created if they do not exist. Can be left empty, if unused.

Decipher integration is handled through the platform’s API Integration element - this is referred to as a
<logic> tag, that has predefined attributes, which are used to pass the necessary information to QualLink.

More on information on the <logic> tag and its setup can be found under Decipher’s KB article:

APl Integration <logic> tag attributes are as follows:

https://forstasurveys.zendesk.com/hc/en-us/articles/4409461436827-Generic-API-Call

e |abel (required) - As any Decipher element, a unique label needs to be set.

® api:data - The information we need to pass through the API call. This would be the fields defined in
the previous step, though it the data needs to be formatted in a specific way in order to be correctly
passed through.

® api:headers (optional) - /t allows you to pass through custom headers for your call. In this case
however, we need to pass through the content type and APl key through here.

® api:params (optional) - /t is the name of a variable that contains the URL parameters and must be a
dictionary. In this case, we will be passing through data definition information.

® api:url (required) - The base URL to access (in our case
- https://api.qualboard.com/api/v4/users/import). The hostname must exist in the api.txt file located
in the company directory (selfserve/xxx) or be white-listed within the api.1 logic node.

e api:method (required) - This attribute specifies the call method. It can be set to GET (default), POST,
DELETE, or PUT. We will be using “GET” in this setup.

® uses (required) - This should always be “api.1”. It is a defined key within Decipher, denoting the type
of <logic> tag we use.

Now that we have defined what can be passed to QualLink as information and what Decipher’s API
Integration element uses to do it, the below setup can be directly referenced or used in order to set this
up within any Decipher survey (just be sure to replace any information on per need basis):

We store all the QualLink fields and their associated information (as well as any survey data we will pass)
within a hidden variable within the Decipher survey, since we need to format the entire thing as a
dictionary, that we will later pass through the APl integration <logic> tag element. Add the below hidden
question at the end of your survey, replacing the bold and underlined red font text with the relevant
information (i.e. the collected PII, APl key, Event ID and /if needed/ group tags):

<t
label=" QUALHOAKD DATA"
where=" ">

<title>Hidden: Qual Board API DATA</litle>
<exec>

C.
ta= thisQuestion

Initialize
=None

taData.yal = None
pablead = {'contentType': ‘application/x-www-form-yrlencoded; charset=UTF-8'}

nabata={

‘Email' — REPLACE WITH RESPONDENT EMAIL GATHERED FROM SURVEY PII QUESTION,
'FirstName' _ REPLACE WITH RESPONDENT FIRST NAME GATHERED FROM SURVEY PII QUESTION,

! _: REPLACE WITH RESPONDENT LAST NAME GATHERED FROM SURVEY PII QUESTION,
‘DisplayName' _: REPLACE WITH RESPONDENT FIRST NAME GATHERED FROM SURVEY PII QUESTION,
'ApiKey' — 'REPLACE WITH QUALLINK PROJECT API KEY',

— 'REPLACE WITH QUALLINK PROJECT EVENT ID',
‘GroupTagss — ‘REPLACE WITH COMMA-SEPARATED TEXTS OF NEEDED SURVEY QUESTION OPTIONS’,

pdogicURL

"Email=%Email }s& FirstN; (FirstN: Samp;LastN: (LastName)s&DisplayN: (DisplayN: & ; ApiKey="(ApiKey)s&SetT
empPassword=%(SetT empPasswcrd)s& ResponseFormat=Y%(ResponseF ormat)s& LangungeCodF“/o(Langu.ageCod:)s& Eventld=%4(Eventld)s&Gro
upTags="%(GroupTags)s” %o p,aData

print plogislRL

taHeadval = str(p,algad).replace("™!*').replace("*'"™)
ta.Data.xal = str(paData).replace("","™).replace("*',")
<lexec>
<tow label="tHead">aHead</row>
<row label="tData">aData</row>
<Mgxtarse>

<suspend/>

We have stored the information in its proper format within the hidden QUALBOARD_DATA variable. Now
we need to funnel that data through the API Integration <logic> tag. Add the below logic tag, after the
hidden QUALBOARD_DATA variable:

<logic label="QualBoard"
api:data="QUALBOARD_ DATA rData unsafe_val"
api:headers="{'contentType": "application/x-www-form-urlencoded;charset=UTF-8',
'Authorization:'REPLACE WITH QUALLINK PROJECT API KEY'}"
apimethod="GET"
api:params="{'withCredentials': ‘true’, 'dataType': 'html'}"
api:url="https://api.qualboard.com/api/v4fusers/import?$ {p.logicURL }"
uses="api.1"/>

The above <logic> tag sends the necessary information to QualLink and with our GET method, we expect a
response from their server, that would denote if this were a new user or not. If the user is new, we'd also
receive the temporary password, which we need to supply to the respondent. We use the below hidden
variable (added after the QualBoard <logic> tag) to capture the QualLink response, so we can further use
that information to finish the setup:

<text
label="QUALBOARD_RESPONSE"
size="40"

where="gxgeule, survey.repor=
<title=Hidden: API response.</title>
<exec>

1= thisQuestion

Initialize
for gach_row in tg.rows:
sach.row.yal = None

response = QualBoard.r,

print response

for key, item in rgsponsediems():
print key, item

for gach,_row in 1g.rows:
if response[gach. row.label):
cach.row.val = response[cach row.label]l

print QualBoard status
</exec>
<row label—"igNewUser> isNewLser</rows
<row label="password">password</row>
<row label="yserld">userld</row>

<row label="error">error</row>

<Mext>

<suspend/>

We have passed the necessary information to QualLink, we have gotten and stored their response. Now
we need to actually use that response and decide whether an email should be sent to the respondent or

not. If they are a new user, then we'd have to send an email with their temporary password and login
instructions.

This would be handled through another <logic> tag.

We create a “resource” <res> tag, that would hold the PIl data we will send over email.
We create a “pipe” <pipe> tag, that hold would show the user's temporary password.

Relevant company information is then added to the e-mail <logic> tag:

® company - The sender company. In this case - Qualtrics.

e content - The body of the email. The information we added to the <res> tag.

® recipient - The user we are sending the email to. Here we need to reference the email the
respondent provided within the Pl collection question.

® sender - The email of the sender company. In this case,

® subject - The subject of this email.

Add the below <res>, <pipe> and <logic> tags, after the QUALBOARD_RESPONSE hidden variable.

<res label="gual, email">

Name: ${contact.r].unsafe val}

<byp >

Email: ${coniaci.r3.unsafe_val}

<hp />

Temporary password: <bz[pipe: pass. pipg]</b=

</res>

<block label="rgspondent.cmail” sond="QUALBOARD. RESPONSE, ielssr — True">
<pipe label="pass. nipg" capture="">
=<case label="r1" gond="QUALBOARD. BESPONSE passaord.xal not in [, None] =5 {QIALBOARD. BESES
<case label="r2" gond="1">None</case>
</pipe=>

<logic label="email"
emailcompany="Qualtrics"
emailisamient="$ {mss.aual smaill"
emailresipieni="$ {contact.r3.unsafe val}"
cmailsender="support@qualboard.com"”
emailisubigel="QualBoard Integration Test"
uses="email. 1"/>

</block>

With this, the setup is complete though it is strongly recommended it is thoroughly tested with active
emails so that the entire process can be reviewed.

If needed, the below Decipher DEMO project can be referenced as both setup, code and general overview:
https://schlesinger.focusvision.com/apps/portal/#/projects/detail/selfserve/1819/g0db/230329

For further documentation visit:
https://qb4.qualboard.com/docs/v4/

If you have any questions or need assistance, please email support@qualboard.com.

https://schlesinger.focusvision.com/apps/portal/#/projects/detail/selfserve/1819/g0db/230329
https://qb4.qualboard.com/docs/v4/

